.. currentmodule:: torch .. _tensor-attributes-doc: Tensor Attributes ================= Each ``torch.Tensor`` has a :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout`. .. _dtype-doc: torch.dtype ----------- .. class:: torch.dtype A :class:`torch.dtype` is an object that represents the data type of a :class:`torch.Tensor`. PyTorch has eight different data types: ======================== =========================================== =========================== Data type dtype Tensor types ======================== =========================================== =========================== 32-bit floating point ``torch.float32`` or ``torch.float`` ``torch.*.FloatTensor`` 64-bit floating point ``torch.float64`` or ``torch.double`` ``torch.*.DoubleTensor`` 16-bit floating point ``torch.float16`` or ``torch.half`` ``torch.*.HalfTensor`` 8-bit integer (unsigned) ``torch.uint8`` ``torch.*.ByteTensor`` 8-bit integer (signed) ``torch.int8`` ``torch.*.CharTensor`` 16-bit integer (signed) ``torch.int16`` or ``torch.short`` ``torch.*.ShortTensor`` 32-bit integer (signed) ``torch.int32`` or ``torch.int`` ``torch.*.IntTensor`` 64-bit integer (signed) ``torch.int64`` or ``torch.long`` ``torch.*.LongTensor`` ======================== =========================================== =========================== .. _device-doc: torch.device ------------ .. class:: torch.device A :class:`torch.device` is an object representing the device on which a :class:`torch.Tensor` is or will be allocated. The :class:`torch.device` contains a device type (``'cpu'`` or ``'cuda'``) and optional device ordinal for the device type. If the device ordinal is not present, this represents the current device for the device type; e.g. a :class:`torch.Tensor` constructed with device ``'cuda'`` is equivalent to ``'cuda:X'`` where X is the result of :func:`torch.cuda.current_device()`. A :class:`torch.Tensor`'s device can be accessed via the :attr:`Tensor.device` property. A :class:`torch.device` can be constructed via a string or via a string and device ordinal Via a string: :: >>> torch.device('cuda:0') device(type='cuda', index=0) >>> torch.device('cpu') device(type='cpu') >>> torch.device('cuda') # current cuda device device(type='cuda') Via a string and device ordinal: :: >>> torch.device('cuda', 0) device(type='cuda', index=0) >>> torch.device('cpu', 0) device(type='cpu', index=0) .. note:: The :class:`torch.device` argument in functions can generally be substituted with a string. This allows for fast prototyping of code. >>> # Example of a function that takes in a torch.device >>> cuda1 = torch.device('cuda:1') >>> torch.randn((2,3), device=cuda1) >>> # You can substitute the torch.device with a string >>> torch.randn((2,3), 'cuda:1') .. note:: For legacy reasons, a device can be constructed via a single device ordinal, which is treated as a cuda device. This matches :meth:`Tensor.get_device`, which returns an ordinal for cuda tensors and is not supported for cpu tensors. >>> torch.device(1) device(type='cuda', index=1) .. note:: Methods which take a device will generally accept a (properly formatted) string or (legacy) integer device ordinal, i.e. the following are all equivalent: >>> torch.randn((2,3), device=torch.device('cuda:1')) >>> torch.randn((2,3), device='cuda:1') >>> torch.randn((2,3), device=1) # legacy .. _layout-doc: torch.layout ------------ .. class:: torch.layout A :class:`torch.layout` is an object that represents the memory layout of a :class:`torch.Tensor`. Currently, we support ``torch.strided`` (dense Tensors) and have experimental support for ``torch.sparse_coo`` (sparse COO Tensors). ``torch.strided`` represents dense Tensors and is the memory layout that is most commonly used. Each strided tensor has an associated :class:`torch.Storage`, which holds its data. These tensors provide multi-dimensional, `strided `_ view of a storage. Strides are a list of integers: the k-th stride represents the jump in the memory necessary to go from one element to the next one in the k-th dimension of the Tensor. This concept makes it possible to perform many tensor operations efficiently. Example:: >>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) >>> x.stride() (5, 1) >>> x.t().stride() (1, 5) For more information on ``torch.sparse_coo`` tensors, see :ref:`sparse-docs`.